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J. Phys. A: Math. Gen. 23 (1990) 791-808. Printed in the U K  

Remarks on the mass spectrum on non-critical coset models 
from Toda theories 

M Henkel and H Saleur 
Service de Physique Thioriquet de Saclay, 91 191 Cif-sur-Yvette Cedex, France 

Received 6 July 1989 

Abstract. We discuss how coset lattice models perturbed in the appropriate direction should 
still be obtained by projections of non-critical integrable vertex models. The latter are 
described in the continuum limit by Toda field theories. By studying the mass spectrum 
of these theories and the projection mechanism, we conjecture without explicit construction 
of the S matrix the mass spectrum of the simplest coset models. Among cases considered 
are the unitary series perturbed in DI3 direction, the Z,, models, the tricritical king and 
tricritical three-state Potts models perturbed by the thermal operator. The latter exhibit 
an E, and E, structure respectively. Some numerical checks are presented. 

1. Introduction 

Possible applications of conformal theory [ 11 to the study of the scaling region in ZD 
statistical mechanics systems are under active consideration [2- 101. 

In a series of recent works, Zamolodchikov [5-71 has devised general techniques 
for off-critical directions which preserve integrability. The latter property is present 
in any conformal invariant theory, an infinite set of integrals of motion being obtained 
by considering composite fields made up of T (  z) ( F( 2 ) ) .  As shown by Zamolodchikov, 
some of these integrals of motion can actually survive if one perturbs the fixed point 
action d* by some well chosen relevant operator 0 (of weights ( h ,  h ) ,  h s 1) to obtain 
a massive field theory. We write 

& = & * + A  6 ( z , i ) d 2 z  (1) I 
where A is a coupling constant of dimensions (1 - h, 1 - h ) A  - , f 2 ( h - ” .  As in [5-71 we 
mainly consider first order in perturbation theory, so no counterterm is implied in (1). 
For any correlator, one finds at first order 

(3 iT . .  . )& = ~ A ( l - h ) d ~ ( O . .  . )& 

or 

d 2 T =  T A ( I - - ~ ) ~ ~ O .  

Q ,  = f T(z, 2 )  dz 

Hence a grade 1 conserved quantity is obtained in any case 

&Q, = 0. 

t Laboratoire de I’Institut de Recherche Fondamentale du Commissariat a I’Energie Atomique. 

(3) 
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Depending on the theory and the perturbation considered, conserved quantities Qn at 
grade n may be built [5 ,7] .  This occurs if there are some operators +,, (with dimensions 
h = n + 1, F =  0) and = T, $, = ( 1  - h ) 6  in (3))  such thatt 

azdn = rAaz(Lr,  (4) 

(and Qn is contour integral of +,,). Equation (4) is equivalent to saying that the residue 
of the simple pole in the short distance expansion of 4,, with 0 is a total derivative 

( 5 )  
1 

&(z)O(w, 8 ) = .  . .+-a,(L,,(z, .f)+regularterms z - w  

This characterisation will be useful in the following. A last form of conservation 
deduced from ( 5 )  is 

+,(z)dz, O(w,G)dw = O  [+ + I 
which states that Qn commutes with the perturbed Hamiltonian. 

If enough conserved quantities can be built, the massive theory (1) is still integrable. 
In such cases, inelastic scattering is forbidden, and the S matrix factorises in terms of 
two particle scattering amplitudes which must satisfy the Yang-Baxter equation. In 
the simplest examples, analyticity, symmetry arguments, and knowledge of grades n 
for conserved quantities allow a complete determination of S-matrix elements. Using 
this line of thought, Zamolodchikov proposed the S matrix for the three-state Potts 
model perturbed by the thermal operator [6] (hence preserving Z3 symmetry), as well 
as the S matrix for the Ising model in a magnetic field (the latter exhibits in particular 
a beautiful E8 structure). Recently, the Lee-Yang singularity has also been studied 
[8]. The knowledge of the S matrix allows in principle the determination of several 
interesting quantities [ 11,121. Among these are the masses of the particles, which are 
given by the poles of matrix elements in the complex rapidity plane [ 113 .  In statistical 
mechanics models, these masses can be studied by analytic [13] or numerical [9] 
diagonalisation of transfer matrices. 

The program initiated in [5-81 could be applied to the study of many off-critical 
systems (for instance unitary c S 1 models perturbed in the Q I 3  direction). One may 
however wish to avoid case-by-case calculation of conserved quantities and S matrix 
in favour of a more general approach. From this point of view the possible relation 
between integrable directions and coset construction [ 141 revealed in [7] is appealing. 

Rather than the GKO approach, we use in the following the related Feigin-Fuchs-like 
[ 15,  161 construction of conformal field theories. Recall that for Ce(kl)@ Ce\')/Ce(kl+!, where 
59;' is an affine simply laced Lie algebra at level k, this first involves an r component 
(where r is the rank of Ce) free bosonic field theory of central charge c = r. Minimal 
models of central charge 

h " ( h " + l )  
c = r  r -  [ ( k + h ' ) ( k + h " + l )  (7) 

(where h" is the Coxeter number of 9) are then obtained by adding a charge at infinity 
and restricting the Hilbert space with screening operators [17-191. On the lattice there 
exists in principle a similar construction. The role of the free field should be played 

t Notice that if bo, t,bn satisfy (4), the same is true for their z derivatives, leading to trivial conserved 
quantities. Such cases are always omitted in the countings. 
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by a vertex model whose degrees of freedom are the r +  1 vectors I( =Afi+ ,  -A,,, 
p = 0,. , . , r, where the A,, are the fundamental weights of 9. The charge at infinity 
should translate into boundary conditions [ 2 11,  and the space of states be restricted 
[22] using the quantum group symmetry [23]. This scheme is completely worked out 
for A, [23], and partly for A, [24]. Fewer progress have been made in the D or E 
cases, probably for technical reasons. 

We explore in this paper the possibility of generalising the above structure to 
non-critical models. As a first step, we concentrate on the determination of mass 
spectra. We discuss how coset models perturbed in the appropriate direction (generalis- 
ing Q I 3  for A , )  should still be described by projections of non-critical vertex models 
(eight-vertex model [25] for A , )  with peculiar boundary conditions. The continuum 
limit of these vertex models turns out to be a Toda field theory [26] based on % ( I )  

(sine-Gordon for A , ) ,  which is the natural non-critical extension of the r component 
free field of Feigin-Fuchs-like constructions. The mass spectrum of coset models is 
argued to be the same (up to degeneracies) than that of the Toda theory, which we 
relate to that of the nonlinear sigma model [27]. We discuss how this spectrum may 
be projected for minimal models, and finally get predictions for all %(k)@ %\’)/ %vil 
theories perturbed in the h = ( k  + 1 )/( k + h” + 1 )  direction. In particular, in most of 
the spontaneously broken symmetry phases, the mass spectrum turns out to be con- 
tinuous. Numerical checks are finally presented. 

During this work, we received [ 101 by T Eguchi and S K Yang where some related 
ideas are discussed. 

2. E =  1 models 

As a first exercise, we discuss some c = 1 models. The simplest example is provided 
by the six-vertex ( X X Z )  model [25], which has a critical line parametrised by A =  
-cos y, Y E  [0, T I ,  and renormalises onto a free bosonic theory with action 

d* = 8 a,cpazcp d2z 
7T J 

where g = 1 - y / r .  At A = - 1 ,  an infinite-order phase transition occurs, for A 3 -1 ,  
there is antiferroelectric order. The phase A 3 1 is frozen. The electromagnetic operator 
content of the six-vertex model is constituted by integer electric and half integer 
magnetic charges [28]. Depending on the parity of the lattice considered, the torus 
partition function reads 

(f= 1 or $). With normalisations (8), the propagator reads (cp(z, .F)cp(w, @))= 
-( 1/2g)  ln/z - w/’ and the stress tensor T ( z )  = -g:(a,cp)*:. 

As shown by the Coulomb gas mapping which leads to (9), a physical (scalar) 
perturbation is represented in the continuum limit by a purely electric or magnetic 
operator. Up to a duality transformation (that exchanges e and m )  and a global shift 
of cp (that exchanges cos and sin) this gives 0 = cos acp, a E Z or gZ/2, h = k= a2/4g.  
Hence d ( l )  is the action of a sine-Gordon model 
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In the generic g irrational case, the Virasoro characters for 0 and the identity are 
X h  = q h / P (  q )  and xo = (1 - q ) /  P (  9). The existence of conserved quantities in the 
identity block [ @ , , I  for grade n 3 1 is excluded by a counting argument. For instance 
at grade 3 one has 

( T 2 )  = g2:(a(p)4:-g:a3@(p: 

where ( T 2 )  is the renormalised square of T. The residue of the single pole in the 
expansion of (T ' )  by 0 reads 

This is a total derivative for h = a2/4g = 1 only. The set of conserved quantities 
associated to (10) is built by considering all fields of integer dimension, with generating 
function X p z 0  , yp2  = l /P(q).  Using the counting argument, one finds Q,> at n = 1 , 3 , 5 , 7  
and n 2 8. 

The excitation spectrum of the sine-Gordon model (10) has been studied in detail 
[29,11]. For h = a 2 / 4 g a  4, the only particles are the soliton-antisoliton pair. Hence 
at zero momentum one observes a mass M twice degenerate, plus a continuum starting 
at 2M: 

h s f  M x 2, continuum above 2M. ( 1 3 )  
If h < f, bound states appear at masses M'" 

In the transfer matrix spectrum, masses M (M"') appear as deformations of U(1) 
charged (neutral) states. 

The 'thermal' perturbation transforms the six-vertex model into an eight-vertex 
model. It is associated with a purely magnetic operator with m = 2 in (9) or a = 2g, 
h = g. In this case the transfer matrix spectrum was explicitly calculated in [30] and 
agrees with the above (13) ,  (14). The relation between the eight-vertex and the sine- 
Gordon model was established in [31]. Note that the six- (eight)-vertex model could 
be mapped alternatively on a Thirring (massive) theory with the same results [32,33]. 
At A =  1 ,  the anisotropy operator coupled to A has a weight h = 1 .  In the ordered 
region A +  -1 - ,  one should thus observe simply the soliton-antisoliton pair at M. This 
is confirmed by the exact solution [30]. 

Another case at c = 1 is the Ashkin-Teller model [25] which renormalises along its 
critical line onto a Z2 orbifold Gaussian theory. The partition function reads (see [34]) 

( 1 5 )  

where g depends on the four-spin coupling. Equation ( 1 5 )  is obtained by showing 
the equivalence [34] between the AT model and a combination of six-vertex model 
sectors of different boundary conditions (BC) .  In particular the Z,, correspond to a 
free field (8) with ( - l )a ( ( - l )b )  BC in the space (time) direction; these terms are 
necessary to reproduce the spin operator which is represented by a twist field [35] in 
the continuum limit. At g = 1 ,  (15)  coincides with the four-state Potts model, at g = $ 
with the Z4 model [36]. At g =  ( A = O ) ,  (15 )  is the square of the Ising model. The 
thermal exponent [37] of the AT or any of the latter models is given by qherm = 1/2g. 

ZAT = $Zc(g, 2)  + q+ z,o + 24 4 

= Z ( g ,  2)+2c(4)- tZJ1) 
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For Tf T,, the equivalence leading to (15 )  still holds between the off-critical AT 

model and a staggered six-vertex model [25], where the perturbation is described by 
the electric operator CY = 1. Hence we expect the values of masses observed in the AT 

transfer matrix spectrum to belong to the set (13) ,  (14). However, due to peculiar 
combination of sectors in (15 ) ,  degeneracies may be different. This requires a more 
detailed analysis. 

We first discuss the case g = f (here the AT model still factorises on two independent 
Ising models). h = f ,  so the sine-Gordon mass spectrum is constituted by the soliton- 
antisoliton pair only. If T a  T,, a gap must appear between the ground state and the 
a = sector of (15 ) ;  explicit analysis of [25] shows that the spin operators couple to 
the states at mass M, which is thus the value of this gap. The polarisation operator 
(product of two spins) correlations must decay with mass 2M since the two Ising 
models are decoupled. Other operators (like the energy) in the a = 0 sector must have 
correlations decaying at least as fast. Hence in this sector the masses M do not appear. 
This result is associated with the absence at T = T, of the electromagnetic operators 
of lowest dimension in the underlying vertex model ( m  = i, h = g/16) in ZJg, 2) .  From 
this we conclude that the AT mass spectrum at g = f for T +  Tf is the same as the 
sine-Gordon one (13 ) .  For a single copy of the Ising model we thus find one particle 
at mass M plus the continuum above 2M. This is confirmed by the exact solution [38]. 

I f  Ts T,, the AT model is ordered. In the thermodynamic limit, both Ising spins 
as well as the polarisation operator acquire a non-zero expectation value. For a finite 
system transfer matrix, the ground state, the first excited state of the a = 0 sector, and 
the two ground states of the a = f sector will thus be asymptotically degenerate. From 
the discussion of [25, ~ 2 4 1 1 ,  the spin operators do not couple to the states at mass 
M. Operators in the a = 0 sector, whose correlations decay faster than the spin ones, 
cannot couple to M either. Hence, above these four very close levels of the transfer 
matrix, the continuum starts directly. For a single copy of the Ising model, one should 
thus observe, for periodic BC, two asymptotically degenerate levels, plus a continuum. 
If a pure phase is selected by fixing BC, there is a single ground state before the 
threshold. Exact solution [38] confirms these predictions. 

The asymmetry between high and low temperature spectra for the Ising model does 
not contradict duality, but is actually a consequence of it. Suppose we consider the 
T S T, transfer matrix spectrum and select a pure phase by choosing fixed BC with 
spins up say on both sides of the strip. Low temperature expansion [25] of the partition 
function is a sum over domain wall loops, with a factor per link. Because of 
the BC, any path from one side of the strip to the other should intersect an even number 
of bonds. To obtain the mass spectrum we use the dual transform (which has the same 
partition function), and thus consider the loops as high temperature [25] T' 3 T, graphs, 
with tanh 1/ T ' =  The fixed BC translate into free ones, but the constraint of an 
even number of crossed bonds excludes the mass M. Indeed, this mass is associated 
with the ground state of the H2 odd sector, and such states propagate with an odd 
number of lines in the high temperature expansion. More generally, consider a self-dual 
model with isolated masses in the T + T: region associated with the different order 
parameters. In the T + T i  region, these masses should be absent since, by duality, 
they are then associated with disorder parameters which cannot be observed in a pure 
phase. 

Considerved quantities for the Ising model have been discussed at length. Using 
fields in [@,,I one finds they occur at any odd grade. Odd numbers can also be 
considered as A, exponents modulo h = 2. 
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Away from the decoupling point, it is reasonable to suppose that spin operators 
still couple to the states at mass M for T +  TZ,  and that these states are absent from 
the a = 0 sector. If g > f ,  neutral bound states appear in the sine-Gordon spectrum. 
Since for T = T,, the scalar ( h  = F )  electromagnetically neutral operators of (15) contain 
all those of the six-vertex model, we expect these bounds states to be present in the 
a = 0 sector of the AT model. Hence despite the sectors combination of (19, the mass 
spectrum of the AT model for T + T: should be the same than the sine-Gordon one. 
For T -+ T i ,  since there are three order parameters, the duality [25] argument gives 
the mass spectrum (14) minus the three lower masses. 

For g = $, we thus find in the T-. T: region particles at mass M ( x 2 ) ,  a M  before 
the continuum. They correspond to the three sectors with eigenvalues w, 03, w2, 
( w  = e 2 i a / 4 )  under Z,. This spectrum agrees with the S matrix constructed in [39], and 
the recent solution of [40]. If T +  T i ,  the spectrum in a pure phase should be 
continuous. For the building of conserved quantities we must take into account the 
fields of (15) with h integer, z=O (note in particular the current h = 3 ,  6= 0). Usual 
arguments establish the existence of conserved Qn for the first exponents of A3 modulo 
h" = 4 .  

For g = 1 finally, (13), (14) gives particles at mass M ( x 2 ) ,  plus a bound state at 
mass M and &M before the continuum. The mass M degenerate three times is 
expected at T +  TZ from S4 symmetry of the four-state Potts model. It corresponds 
to the different order parameter sectors. The mass at &M should correspond to the 
ground state of energy like sector. If T-. T i ,  the duality argument shows that the 
three masses M are not observed. The spectrum should thus contain the mass at f i M  
only before the continuum. 

Other off critical directions where O(1) is represented by an electric or magnetic 
operator can be studied in the same way. This is not the case of the Z2 symmetry 
breaking perturbation, since the spin operator is represented in the continuum limit 
by a twist field U 

azcp0(w, % ) - ( z -  W ) p 2 T ( w ,  *). 

This definition being scale invariant, the dimension of a, h = E =  &, hence its two-point 
function, does not depend on the renormalised coupling g. This is not the case however 
for higher-order correlators, and we expect the mass spectrum of the AT model perturbed 
by a magnetic field H ( S ,  + S , )  to depend on g. 

Additional information is known at the decoupling point g = f from Zamolod- 
chikov's work [7]. Since for a single Ising model the mass spectrum before the 2 M  
threshold is 

97T 1 4 7 ~  
30 30 

2 sin - M, 2 sin - M M, 

we have for the AT model at g = f 
97T 
30 

2 sin - M (  x2), 
14ir 
30 

2 sin- M ( x 2 ) .  

For g # f ,  this spectrum gets deformed as a function of g. We notice that blind 
application of the sine-Gordon spectrum for h = & gives bound states at masses 

i = 1,2 ,  . . . , 15 

a subset of which is (16) ( i  =9,  14). The spectrum (16) cannot be obtained by 
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considering perturbation by the polarisation operator at the decoupling point, as was 
tried earlier by Luther [31]. 

3. c<  1 models 

We now turn to the unitary series with central charges [41] 
6 

c = l -  
F ( P +  1 ) ’  

We mainly deal with the diagonal series (AA modular invariants [42]) corresponding 
to p - 1 multicritical models [43], or integrable IRF restricted models defined on A, 
diagrams [22]. These are still related to the six-vertex model, in presence however of 
some floating charges [21]. This is analogous to the construction of c <  1 Virasoro 
algebra representations using the free bosonic field with charge at infinity [15, 161. 
Due to the breaking of electrical neutrality it is not possible to use straightforwardly 
the sine-Gordon model (IO) to obtain the mass spectrum when a relevant perturbation 
is turned on. A special situation occurs however in the case of @I3 [lo] 

P - 1  
h13 =z. 

We first discuss it from the lattice point of view. 
At criticality, it has been shown how the A, transfer matrix spectrum can be 

recovered by combining p sectors of the six-vertex model with twisted boundary 
conditions [23,44]. The ground state of the rth sector defines the order parameter 
dimension h,, associated with a, = ( r  - l ) a o  (see below). A characterisation in terms 
of quantum Al symmetry is known for levels to be kept [23]. In particular the ground 
states of r = p  sector has to be excluded since h,, does not belong to the operator 
content [42]. The first excited state of each sector, associated with a, - 1 ,  has also to 
be excluded. Combining all relevant levels gives an expression for A, partition function 
in terms of Gaussian ones [45] similar to (15 )  

z*e==c ( - I-L p+l)-zc(-$l)- 
p + l ’  

A lattice integrable extension of A, models is known [22], with elliptic Boltzmann 
weights, corresponding to the direction. It is related this time to the eight-vertex 
model [25]. There is no such detailed information on the matching of levels, as in the 
critical case (20). But functional equations satisfied by transfer matrices indicate [22] 
that eigenvalues of the A, model are still included in the set of eight-vertex model 
eigenvalues obtained by combining p sectors of different twisted boundary conditions 
( z  term in (1.3.10) of [22]). Hence we reach again the conclusion that the mass 
spectrum of the A, model in the @I3 direction should be the one of the eight-vertex 
(i.e. sine-Gordon) model, with possibility of different multiplicities. Note however 
that mass formulae (13), (14), due to breaking of electrical neutrality, have to be used 
not with h13 (20), but with the dimension of the magnetic ( m  = 2) operator in the 
six-vertex model 

In the unitary series (19), p 3 3.  Hence h > 4 in (21), and the sine-Gordon spectrum 
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contains only the soliton-antisoliton pair at mass M. For restricted A, models, the 
alternative is thus simply between observing one mass M or not before the threshold. 

We now recall that the critical point separates the regimes 3 and 4 [ 2 2 ] .  Regime 
3 is ordered for p > 2 ,  with CL - 1 phases associated with the p - 1 order parameters 
(or the p - 1 kept ground states of the p sectors discussed above). If p = 3, it 
corresponds to the low temperature region of the Ising model. Regime 4 is ordered 
for p > 3 ,  with p - 2  phases. If p = 3, it corresponds to the high temperature region 
of the Ising model. 

If p = 3, the mass spectrum in regime 3 is continuous, as discussed earlier. On the 
other hand we can also consider the p + 00 limit of A, models. It is known that scaling 
the distance to criticality t in such a way that f / p  remains fixed [46], one obtains 
weights of the six-vertex model perturbed in the A < -1 direction. (In this process, 
the A, models are now considered at finite distance of criticality, but their spectrum 
being related to the eight-vertex model should be the same as for T + T,, hence allowing 
the argument about presence or not of a given mass). For the latter the spectrum 
contains the soliton antisoliton pair only. If t = 0 however, the A, partition function 
goes to the periodic free field one 

Since in ( 2 2 )  all U ( l )  charged states are excluded, the soliton-antisoliton pair should 
not be observed. Hence in the limit p +CO, the A, mass spectrum should also be 
continuous. It is reasonable to suppose this holds true for any p between 3 and as 
well. 

In regime 4 case, the spectrum for p = 3 contains a particle at mass M before the 
continuum. It is associated to a gap between the r = 1 and r = 2 sectors of the vertex 
model. If p > 3 ,  since there are only p - 2 phases, the ground states of the p - 1 sectors 
which were kept at criticality cannot all become degenerate. Inside a given sector, by 
analogy with what happens in regime 3 case, the spectrum should be continuous, 
starting at 2M. But it may be that, as in the Ising case, the gap between r = 1 and 
some r sector gives the isolated mass M, as is the case for p = 3. In fact, numerical 
calculations show this is not the case for p = 4 , 5 , 6 ,  and hence likely for any p. We 
thus reach the conclusion that the mass spectrum for A, models is continuous in all 
ordered regimes. 

Hence diagonal unitary series perturbed by @ , 3  lead to a continuous mass spectrum, 
except for the special case of the Ising model and T-,  Tf (regime 4) where there is a 
mass M before the threshold at 2M. The case of non-unitary minimal models is more 
difficult because the sine-Gordon spectrum presents there additional bound states. For 
instance in the Lee-Yang case [47] c = -?, g = :, there is the soliton-antisoliton pair 
at M plus a bound state at A M .  In this simple situation, on the basis of i(p3 Lagrangian 
formalism [48], one expects however a single particle associated with cp to be present, 
hence observation in the minimal model of a single mass M before the continuum, 
This is confirmed by [8]. 

We now comment on some peculiarities of O I 3  form the point of view of conformal 
theory [lo]. Recall that in the Coulomb gas approach, the dimensions are obtained 
by considering vertex operators of charge a and 2ao - a as conjugate 

a 2 - 2 a a ,  

4g 
h =  
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where 

( y = 1 / ( p  + 1) in (8)). There are two screening charges 

and conformal weights in the Kac table are associated with 

a- 
(26) 

a+ 
arr = (1 - r )  -+(l - s )  - 1 s r s p - 1  1 s s s p .  

2 2 

Hence h, ,  is associated with a13 = -a- = 2 p / ( p  + l),  the opposite of a- screening 
charge (note that h31 associated with ( Y ~ ~  = -a+ = -2 corresponds to an irrelevant 
perturbation). This can prove useful in building conserved quantities. Indeed, on the 
basis of the counting argument, one finds for theories (19) perturbed by and p 3 5 
conserved quantities at grades n = 1,3,5,7 only (for p = 3, it goes up to n = 29, p = 4 
up to n = 11). However let us discuss in some detail n = 3. One has 

T(Z) = -g:(acp)’: +ia,d’cp (27) 

hence the regularised square 

When calculating short distance expansion with a vertex operator eiarF, the last two 
terms which are total derivatives do not contribute to the single pole. We find the 
same result as (12), plus -iaa;/g:a3 eiacp:.  The condition for the residue of the single 
pole to be a total derivative reads 

a 4 + 2 a 2 ( 2 a i + 4 g ) +  16g2= 0 (29) 

solutions of which are 

CY =*a*. (30) 

More generally, we know that screening operators commute with the Virasoro algebra, 
so the expansion of any polynomial in T and its derivatives with cia-' gives a single 
pole which is a total derivative. For polynomials which are even in cp + -cp (up to 
total derivatives like in T or (T’ ) ) ,  this will also be the case for e-iO-cp, hence for the 
physical perturbation 0 = cos a-cp. It should be easier to construct such polynomials 
than to work with the whole Virasoro system as in [7]. As an example, the conserved 
quantity at grade n =9,  which is not given by the counting argument, is obtained in 
this way in [lo]. There are several reasons [49] to suppose that such quantities occur 
for any odd n. Note that conserved quantities built in the Feigin-Fuchs framework 
may well be not observed in the minimal models themselves due to restriction of the 
Hilbert space. For instance in the Lee-Yang case, only a subset [8] ( n  not divisible 
by 3) of the odd numbers arises. For unitary models all odd numbers are expected. 
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We notice finally that the correct weight to be put in sine-Gordon spectrum (21) 
is obtained from formula (23) by removing the a. dependent part: h = ( - ~ x ) ~ / 4 g  = g. 

4. Coset models 

We turn now to A, theories. We denote by A,, p = 1, .  . . , n, the weights vectors, r, 
the root vectors, with normalisations 

An integrable ( n  + 1)(2n + 1)-vertex model [50] generalising the six-vertex model is 
known, whose bond variables are the set of n + 1 vectors 

CC =Ap+,-A,  p =O,. . . , n (32) 

with conventions A. = A,+, = 0. Dual face variables are heights of a solid-on-solid 
model defined on the weight lattice dilated by a factor f i r  (this is necessary to respect 
the familiar conventions of (8) and (31)). This model has a critical line parametrised 
by a parameter y E [O, T], and renormalises onto the free n component bosonic theory 
with c =  n and [51,52] 

where g = 1 - ( y / r )  [53]. The propagator of (33) is 

( q ( z ,  z ) ~ ( w ,  a ) )  = -(n/2g) In/z - w1'. 

As in A, case, a non-critical extension-Belavine model-of the above ( n  + 1) x 
(2n + 1) vertex model has been written where additional vertices are introduced, and 
Boltzmann weights are given by elliptic functions [50]. The associated exponent [55] 
is still (21). 

Most interesting systems related to A,, have c < n. In the conformal framework, 
they are obtained by a generalised [17-19, 511 Feigin-Fuchs construction based on 
the stress tensor 

T = -g:(8q)2:+iaopd2q (34) 

where 

n ( n +  l ) ( n  +2 )  
12 

p = AI + AZ+. . . A,, p *  = 

Writing g = p / ( p  + l ) ,  one has a. = l / (p  + 1) and 

For comparison with (7) one has 

h " = n + l  k = p - n - 1  
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Vertex operators of charge cy and (2fiaop - c y )  are conjugate, with weight 

There are 2n screening operators of charges 

with a ,  = 2, a- = - 2 p / ( p  + 1 )  as in (25). 
From a lattice point of view, the connection between the ( n + 1 ) ( 2 n + l )  vertex 

model and the restricted I R F  models is not as fully understood as for n = 1. For the 
diagonal unitary series however, i.e. models related to diagonal modular invariants 
[42], whose configuration space is [54] the set of dominant integral weights of level 
k +  1 = p - n, to which we restrict here, it involves also [51] a combination of sectors 
of the vertex model with different boundary conditions. Expressions similar to (20) 
have been written [51]. 

The non-critical elliptic extension of restricted models has been studied in [ 541. 
Two regimes ( 3  and 4) can be reached which are ordered except for the case k = 1 
and regime 4, with associated exponent 

p - n  k + l  h = - -  
p + l - - k + n + 2 '  (39 )  

Functional relations satisfied by eigenvalues do not seem to have been studied so far. 
Intertwining vectors are however known, which indicate that the mass spectrum of 
restricted models perturbed by operator (39 )  should be the same, with the possibility 
of different multiplicities, than that of the Belavin model, i.e. of the ( n  + 1)(2n + 1) 
vertex model perturbed by (21). The electric charge associated to (39 )  is related to 
the highest root of A,, 

f l  

a = - A a -  C rp. (40) 
p = l  

Since the Belavin model exhibits H n + ,  symmetry, we must thus write its continuum 
limit action ( 1 )  with an operator 0 that contains all Zn+l  transforms of (40). These 
turn out to be the n a- like screening charges a = &a-r,. Hence, the perturbation 
being, moreover, real, 

(of course all vertex operators in C have the same dimension (21) in the free theory 
(33 ) ) .  This is essentially the action of a Toda field theory [26, 561. The latter however 
should not contain the cc term of (41). It can be suppressed by looking instead at 
equations of motion for the holomorphic (at A = 0) component of the field p R ,  one finds 

which is Toda system based on A!,') [57]. 
We now discuss the mass spectrum of (42). We note first that the ( n  + 1)(2n + 1 )  

vertex model exhibits SU(n + 1 )  x SU(n + 1) symmetry at y = 0. Instead of the non- 
critical elliptic Belavin model, one can consider there the extension keeping the same 
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set of vertices, but with y purely imaginary (and hence hyperbolic Boltzmann weights). 
This corresponds to perturbing (33) with a marginal operator a- = -2 in (41). Then 
the spectrum is known to be independent of y up to a global scale [52], and is given 
by the spectrum of the nonlinear sigma model [27, 581 on the group S U ( n + l ) .  
Fundamental particles have masses 

In the lack of any further information, we make the hypothesis that, as in the 
sine-Gordon case, spectrum (43) is still observed when one perturbs (33) as in (41) 
with a- < -2. It should correspond to the charged solitons of the theory. Moreover, 
as in (14), for coupling 1 - h small enough, no additional bound states should appear. 
In the following we suppose this holds true at least for h L ( n  + 2)/(  n + 3). With these 
hypotheses, the spectrum of restricted models perturbed by (39) is given, up to different 
multiplicities, by 

7T M"'  = & f ( f l + I - i )  - - sin - i7T /sin n+l i = 1, . . . , n. 
n + l  (44) 

An interesting case occurs for k = 1 where the restricted model is identical to the 
parafermion Z,+, model of [36]. For n = 2 it corresponds in particular to the three-state 
Potts model, for n = 3 to the Z4 model already discussed. In the disordered regime 4, 
the mass spectrum should be exactly (44), masses M'" corresponding to the different 
order parameters. The direction (39) corresponds to the usual thermal perturbation, 
preserving in particular Z n + ,  symmetry. This prediction agrees with the results of 
[39,40], which seems to confirm the validity of our assumptions. Regime 3 is ordered, 
and by the duality argument [60], the spectrum there should be continuous. In k + CO 

limit, the same argument as in (22) can be used to show that the spectrum in regime 
3 is still continuous. Probably this holds true for finite k as well. In regime 4 we do 
not have arguments or numerical calculations to determine what happens if k > 1 .  By 
analogy with n = 1 case, we suspect the spectrum to be as well continuous. 

We notice that Zn+l  transforms of charge (Y in (40) are the screening charges (38), 
as was the case for n = 1 .  For n > 1 ,  the symmetry algebra is generated [I91 by the 
stress tensor T and n - 1 higher spin operators W associated with higher-order Casimirs 
of A,,. The screening operators commute with T and all the W. Hence conserved 
quantities are obtained by building polynomials in T, W and their derivatives which 
are Zn+, symmetric (up to total derivatives). One expects [lo] by analogy with the 
classical case [26] that the corresponding grades are given by the exponents of A, 
modulo the Coxeter h" = n + 1 .  This can be established for the first few numbers. 

We now consider D and E algebras. In the D case, the underlying critical vertex 
model is known [20]; in the E case, weights have been obtained at the higher symmetry 
(G x G) point only [27]. Not much is known on the possible restricted tw= models. 
Some information can however be obtained from free field construction of related 
conformal theories. 

One starts there with a r component bosonic field and a modified stress tensor as 
in (34). Here 

h " ( h " + l )  
12 . p = r  (45) 
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With g and cq, as before one has 

c = r  [ 1 -  h ' ( ! z  1 ' 3  

For comparison with (7) 

Hence one finds for D, algebras 

c = 1 fork  = 1 3 (2n -2)(2n - 1) 
(2n - 2 +  k)(2n - 1 + k )  

and for the exceptional cases 

E6 : c = q f o r k = l  

c = $j for k = 1 [ (18+k) (19+k)  342 1 E,: c = 7  1- (49) 

For D, at k = 1 the central charge is unity. The corresponding models should be points 
on the Gaussian (six-vertex) or orbifold (Ashkin-Teller) lines. For E8 at k = 1 we find 
the central charge of the Ising model, for E, at k = 1 ,  the one of the tricritical Ising 
model. In both cases there is only one modular invariant [42], and one checks that 
all the corresponding characters can be obtained in the coset construction. For E6 at 
k = 1 we get the central charge of the 5th critical Ising or tricritical three-state Potts 
model. However E:' has only nine representations at level 2; hence only the tricritical 
three-state Potts model can be considered as arising from the coset. 

Screening operators are built as in (38), where rfi are the simple roots. 
It does not seem that any elliptic-like vertex models associated with D or E has 

been written, possibly for some fundamental reason [61]. We may suppose however 
that integrable off-critical directions exist, because in particular of the existence of a 
(classically) integrable Toda system [56]. The latter looks as (42) where the set of 
simple roots has to be completed by ( - f i a - ) x  the highest root. The associated 
exponent for the vertex model should still be given by (21). For the restricted model, 
we find using (37) 

p - h " +  1 k + l  - h =  - 
P + 1  k +  h " + l '  

Conserved quantities are expected to occur at grades given by the exponent of % 
modulo h '. 

As in the A,, case, the mass spectrum for D or E vertex models in the hyperbolic 
weights region, hence of the Toda field theory with h = 1 perturbing operator, is the 
one of the nonlinear sigma model with G x G symmetry [52]. We conjecture again 
this holds true for h < 1, and that at least for h 2 ( h " +  l ) / ( h " + 2 ) ,  no bound state is 
formed. Hence the mass spectrum of models (48) or (49) perturbed in direction (50) 
should be the one calculated in [27], with maybe different degeneracies. 
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In the D, sigma model, fundamental particles have masses 

For k = 1 the coset models have c = 1 ,  while the dimension of the perturbating field is 
h = l / n .  In this case (51)  is also the spectrum which would be obtained by using the 
sine-Gordon mass formulae (13) ,  (14) ,  as expected. This constitutes an interesting 
cross check of our hypothesis. 

Algebra E8 at k = 1 corresponds to the Ising model in a magnetic field. There 
indeed the spectrum of [27] is the same than the one obtained by Zamolodchikov. 
Since there is no broken symmetry phase, it is observed on both sides of the critical 
point. This was confirmed numerically [9]. 

Algebra E, at k = 1 corresponds to the tricritical Ising model [62] perturbed by the 
energy operator, h A. The masses of elementary particles for the sigma model are 

2 T  T i? 

9 18 9 
M ' 3 '  = 2 COS - M M ' 4 ' =  2 COS - M M'" = M M'" = 2 sin - M 

(52)  
7T 2i? i? T T  

18 18 9 18 9 
M'6' = M / 2  sin - M'" = 4 COS - COS - M. M'" = 4 cos - sin - M 

Only M ' I ) ,  M'" ,  
thus expect the mass spectrum to be given (up to different degeneracies) by 

M'4 '  are under the 2M threshold. For an E, coset model we 

2 7  77 
2 COS - M, 

9 9 18 
2 sin - M, 2 COS - M. M ,  (53)  

In the Ising tricritical case ( k  = 1) and for T +  T , f ,  (53)  is indeed observed numerically 
(see below). Regarding conserved quantities, the counting argument shows some occur 
for n = 1 , 5 , 7 , 9 , 1 1 , 1 3 , 1 7  which are E, exponents h" = 18. As usual one supposes they 
can be built for other n by moding out with h '. For T + T i ,  one finds numerically a 
continuous spectrum. 

Algebra E6 at k = 1 corresponds to the tricritical three state Potts model perturbed 
by the thermal operator h = f .  The fundamental particles have here masses 

M"'  = M (  ~ 2 )  MI2' = a M  ~ 1 3 1 = -  a+' M ( x 2 )  MI4 '= (&+ 1)M. a 
(54)  

are under the 2M threshold and should be observed for T- ,  T:. 
States associated with M" ', M ( 3 )  have non-zero Z 3  charge. Corresponding masses are 
probably not observed when T + T i ,  although we do not know a self-dual version of 
the tricritical three-state Potts model to justify it. Regarding conserved quantities, the 
counting argument gives grades n = 1 , 5 , 7 ,  1 1  in the identity block. Additional ones 
at grades n = 4 , 8  can be obtained using the block [051]r where h S 1  = 5. This would 
not be possible in the 5th critical Ising model where there is no field of weights ( 5 , O ) ) .  
Hence we find the exponents of E,. 

3 9 
M(1)  M(2i M(31 

5. Numerical checks 

Our predictions relying on some plausible but not rigorously justified steps, we feel it 
worthwhile to carry out a few numerical checks. The general technique consists in 
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studying transfer matrices structure for models close to criticality, where the level gaps 
are expected to fit with mass spectra discussed. To reproduce our continuum limit 
results in lattice observations one should have L >> 6 = M - '  = A 1/[2( h - l ) ]  >> a where 
L is the finite size system (strip width) and a is the lattice spacing. In numerical 
calculations, one can check that this scaling regime is reached by plotting [9] the 
various measured masses (of order i )  as functions fi' ( z  = LA1/[2(1 -/I)]): these must 
lie on a single curve as L and A vary. Predicted mass ratios are observed in the z + 0;) 

limit. The critical dimensions are on the other hand obtained by considering the finite 
size scaling behaviour of gaps at A = 0, which corresponds to the opposite limit z + 0 
of functions f ( I ) .  

We start by considering the Ashkin-Teller model perturbed by the thermal operator. 
For technical convenience, calculations have been carried out using the Hamiltonian 
version of [63]. In table 1 we give a few results for the measured mass spectrum for 
T + TZ at several points on the critical line. E is the four-spin coupling, related to the 
renormalised constant in (8) by g = l/r COS- ' ( -E) .  The mass M (twice degenerate) 
is set equal to 1 .  Between the Ising decoupling point and the Z2 point, finite size 
corrections are described by a power law and the convergence of conventional extrapo- 
lation algorithms is comparable with that found in the Ising model [9]. Between the 
Z4 and the Potts point however, the leading correction becomes logarithmic. The 
convergence of the data becomes difficult when approaching the four-state Potts model 
point, and final numbers obtained by a double extrapolation procedure [9] have rather 
large error bars. Nevertheless our predictions are confirmed, especially the appearance 
of a fourth mass between the Z4 ( E  = A/2) and the Potts points. In the case T +  T i  

Table 1.  Numerical results for the third and fourth masses of the Ashkin-Teller model 
and T +  T:. E is the four spins coupling. M ( " =  M I 2 ' =  1. 

F 0.25 l l J2  0.875 0.92 1 .o 

1.853 (8)  1.40 (5) 1.24 ( 5 )  1.17 ( 5 )  1 ~ ( 3 1  

2 .0(1)  2.0 (1) 1.94 (5) 1.91 ( 5 )  1.8 (2) M(41 

Table 2. Predictions for the mass spectrum of several coset models perturbed by the 
operator of weight h. 

Continuous in regime 3 and 4 ( 6 1 3 )  
A, I R F  models p S 4  

P + 1  
2 

h = -  (thermal) Z,,,, models T +  T,+ MI ' )=  
f l + l  

T +  7; Continuous 
iT iT 

lsing model (E,)  H+O= M ,  2 C O S -  M ,  2 COS- M 
5 30 

277 iT H 

9 9 18 
Tricritical k ing  (E,) T +  T; M ,  2 sin - M, 2 cos - M, 2 cos - M 

h=' (mag- 
Ib netic) 

h=' 10 

(thermal) 
T +  7; Continuous 

Tricritical three-state 

Potts model T +  T J  M ( x Z ) , \ i ? M ,  - M ( x 2 )  (thermal) h = $  
&+ 1 

43 
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our results agree with a continuum spectrum up to the Z4 point. Around the four- 
state Potts point, the convergence is not good enough to give information on the 
fourth mass. 

Another test of interest concerns the models (18) perturbed by the 013 ( h  = 2) 
operator. There calculations have been carried out using the I R F  models of [22], and 
Boltzmann weights given by elliptic functions of nome q. In this case, the predicted 
spectrum being related to the eight-vertex model should be observed at finite distance 
of the critical point as well [30], which makes a numerical test easier. We indeed 
observed with great accuracy results confirming the continuum in regimes 3 and 4 for 
A, models and p = 4, 5,6. For instance in the tricritical Ising model case (here @ , 3  

corresponds to the vacancy operator) we give estimates of the five first masses in regime 
4 as q + O  

M“’= 1 M‘”= l.OO(5) M‘3’= 1.1(1) 

JVP4’= 1.1(1) M“’ = 1.2( 1). 
(55) 

Finally we give results for the tricritical Ising model perturbed in the thermal 
direction ( h  = &). Calculations have been carried out on the A,  model [22] by adding 
to the critical Boltzmann weights a perturbation proportional to the lattice realisation 
of 012 [64]. If T +  T:, the estimates of the four first masses are 

M‘” = 1 M‘” = 1.26(3) M‘3’ = 1.88(5) M‘4’ = 1.95(5) (56) 

in agreement with the E, prediction (53). 

6. Conclusion 

To conclude, it is clear that we have just realised a few steps in the program proposed 
to analyse coset models off criticality. Nevertheless, the circumstances are fortunate 
enough that a few assumptions allowed us, using already known results, to derive the 
mass spectrum of several interesting models. Actually these spectra appear to enjoy 
more universality than the critical properties. In particular it is striking that with one 
possible exception (Ashkin-Teller model for g 3 i )  the mass spectrum is continuous 
in all ordered phases encountered [65]. Among things which remain to be understood 
are the proper derivation of the mass spectrum for Toda theories, and the restriction 
procedure that relates them to coset models off criticality. On the lattice, this 
latter question may involve using the elliptic extension of the quantum groups [66]. 
Also it would be interesting to derive the S matrices themselves from those written in 
~ 7 1 .  
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Note added in prooj Since the submission of this paper, several beautiful papers have solved most of the 
questions we raised. See, for instance, the recent preprints by Christe-Musseido, Braden er al, Smimov and 
references therein. 
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